
Week 9 - Monday

 What did we talk about last time?
 Network security
 Symmetric cryptography
 Public key cryptography
 Cryptographic hash functions

 Transport-Layer Security (TLS) adds end-to-end security to
TCP
 Secure versions of protocols often add an "s" to their names: HTTPS,

SFTP, and IMAPS
 These protocols use TLS

 With TLS, the TCP data is encrypted
 However, the TCP headers are not encrypted
 If they were, the OS wouldn't know which port to deliver them to
 Because network traffic needs to know where to go, it's usually

possible to do traffic analysis, even when the data is encrypted

 With TLS, the connection first performs a
TCP three-way handshake

 Then, the client and the server perform a
TLS handshake that uses public key
cryptography to agree on a session key

 The session key is used to communicate
securely using symmetric key encryption
(probably AES) during the TCP session

 Because the data in the TCP segments is encrypted with AES,
the information's confidentiality is maintained

 To protect integrity, a message authentication code (MAC) of
the TCP headers is attached as an optional TCP field
 The MAC is a cryptographic hash digest, probably using SHA-2

 These are the broad strokes, but there are many details
 Details change with each version of TLS
 We're up to TLS 1.3 now

 TLS is the successor to SSL
 SSL had three versions but was eventually replaced by TLS because of

security flaws
 Security flaws exist in TLS 1.0, 1.1, and 1.2, leading to the adoption of TLS

1.3
 In some cases, the flaws are because encryption algorithms that were

discovered to be insecure are allowed
 In other cases, the protocols themselves had vulnerabilities that could be

exploited
 Key takeaway:
 Security is not one-and-done
 Application security should be designed so that it's easy to change over to newer

standards

 TCP and UDP provide a framework for end-to-end
communication between processes

 But they ignore the fact that different hosts are
communicating

 The Internet layer provides a system for getting messages
from host to host
 The data plane gives the structure of the network, using Internet

Protocol (IP) addresses
 The control plane controls how messages are routed through the

network

 Three ranges of IP addresses are reserved in IPv4 for private
subnets:
 192.168.0.0/16 (216 = 65,536 possible devices)
 172.16.0.0/12 (220 = 1,048,576 possible devices)
 10.0.0.0/8 (224 = 16,777,216 possible devices)

 The first range is probably familiar to you because it's used for
most home networks

 IPv6 has its own range, fd00::/8, that allows for up to 264

devices

 So that different subnets can communicate, a router connects the
private subnet to the Internet
 The router has a private IP address, used to communicate with the subnet,

and a public IP address, used to communicate with the rest of the world
 Routers do network address translation (NAT), a kind of IP

masquerading
 The outside world only sees the router's IP
 When the router gets a message, it sends it to the appropriate device in

the private subnet
 The router observes traffic and changes port numbers on incoming and

outgoing packets so that multiple devices behind the router can
communicate with a single server

Bob's HomeAlice's Home

ISP

Internet

192.168.1.3 192.168.1.5

192.168.1.1

192.168.1.7 192.168.1.3

192.168.1.0

75.3.28.14 75.3.28.27

 version distinguishes between IPv4 and IPv6
 protocol is TCP or UDP
 checksum is just for the header and does no checking for the payload
 TTL gives the number of times the packet can be forwarded (keeps packets from hopping

around forever)
 Like UDP, IP makes no guarantees about reliability
 The purple options fields are variable length

0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-31

version length type of service total length

identification flags fragment offset

TTL protocol checksum

source address

destination address

options

payload (transport-layer segment)

 Here's an example of the values (in hex) that might be stored in an
IPv4 packet

 Note that IPv6 packets are similar but simpler, because they don't
have optional fields

Header

4500
0060
0000 0000
08
06
6862
867e 8ddd
5dd8 d822

IPv4, length = 20 bytes (5 words)
total length = 96 bytes
ID, flags, offset (not used here)
TTL
protocol (TCP)
checksum
source address 134.126.141.221
destination address 93.184.216.34

Payload …

 The Internet is a network of networks
 Each independent network controlled by a single entity is called an

autonomous system (AS)
 Each AS connects to other ASes at gateway routers
 BGP is a protocol that describes how these routers communicate to each

other the paths through them to other networks
 Within an AS, OSPF, RIP, and other protocols determine the

fastest route through the network
 OSPF uses Dijkstra's shortest path algorithm based on time delays,

broadcasting information to other routers
 Alternatively, when a router using RIP discovers a new shortest path, it

forwards the information only to its neighbors

 The Internet layer focuses on routing packets through networks
 The link layer focuses on forwarding packets from point to point
 This forwarding all happens within a single kind of technology
 Things can go wrong at this fundamental level of networking:
 Processing delay because checksums and other information have to be

computed
 Queuing delay because other packets are waiting to be sent
 Transmission delay because converting to the physical layer takes work
 Propagation delay because the physical layer can't send data instantly

 All these delays can add up

 Ethernet is one of the best known examples of link level
protocols

 Ethernet is a collection of standards for communicating over
copper or fiber optics

 Like higher level protocols, Ethernet also wraps its data with a
header (and a footer too)
 Typically, link layer packets are called frames

 For historical reasons, Ethernet frames are described in octets
(always 8 bits) rather than bytes (which used to be variable in
size)

 An Ethernet frame uses:
 8 octets for a preamble that's always the same, to mark the start of a message
 6 octets for destination address
 6 octets for source address
 2 octets for type of Ethernet
 A payload of variable size
 4 octets for a cyclic redundancy check (CRC), an error checking value computed from the whole

frame that is stronger than a checksum
 Source and destination addresses are media access control (MAC) addresses that are

usually the same for a device's entire life
 Address Resolution Protocol (ARP) is used to ask devices on the network for their MAC

based on their IP

Size 8 octets 6 octets 6 octets 2 octets varies 4 octets

Purpose Preamble Destination Source Type Payload CRC

Example aaaaaaaaaaaaaaab f0def12cc22b f45c89bd332d 0800 ... 64713722

 Here's an example of all the layers together:

Ethernet header aaaa aaaa aaaa aaab f0de f12c c22b f45c 89bd 332d 0800

IPv4 header 4500 0060 0000 0000 0806 6862 867e 8ddd 5dd8 d822

Et
he

rn
et

Pa

yl
oa

dTCP header 1388 0050 0000 0017 0000 002a 5010 1000 cf33 0000

IP
v4

Pa

yl
oa

d

HTTP header
4745 5420 2f20 4854 5450 2f31 2e31 0d0a 486f 7374
3a20 6578 616d 706c 652e 636f 6d0d 0a43 6f6e 6e65
6374 696f 6e3a 2063 6c6f 7365 0d0a 0d0a

TC
P

Pa
yl

oa
d

Ethernet FCS 6471 3722

 Below the link layer, the
physical layer is actually
communicating bits

 Bits are communicated as
waves of light or radio
signals, through air, fiber
optics, or copper

 There are different ways of
carrying a signal in a wave

 Deeper than that requires
us to talk about more
physics and electrical
engineering than we want
to right now

 Wireless communication differs from wired at the link and
physical layers and sometimes above

 There are a few important wireless network technologies:
 Wi-Fi is a set of standards designed to replace normal wired networking

connections
 Bluetooth is designed for short-range mobile ad hoc networks (MANETS)
▪ Uses a star topology where many peripherals connect to a central devices

 Zigbee uses a wireless mesh network for communicating between many
low powered devices
▪ Popular for Internet of Things (IoT) applications

 Many processes can run concurrently
 Each one executes independently
 Each process has its own memory layout

 Many threads can also run concurrently
 Each one executes independently
 Each thread has its own stack to keep track of its function calls
 But all threads within a process share code, data, heap, and kernel

segments
 Just as we used fork() to spawn new processes, there are

libraries to spawn new threads within a process and coordinate
them

 Using threads allows for more modular software since threads
can call the same functions within a program

 Threads can be more efficient since there's no context switch
needed for different threads to interact

 Some models of programming like GUIs depend on threads so
that one unit of code needs can react to an action taken
elsewhere

 Since threads share memory, there's no need for IPC libraries

 Threads are less isolated from each other than separate
processes

 Consequences:
 A thread crashing from a segmentation fault will kill the entire

process, including the other threads
 Bugs called race conditions occur, where the behavior of the

program is different depending on which thread executed first

 Race conditions are a central problem with threads
 Thread scheduling is non-deterministic
 It's often impossible to predict when the statements from one thread

are going to be executed with respect to those in another thread
 If the statements modify the same memory, the results can be

inconsistent
 One of the most frustrating issues with race conditions is that

they can occur rarely
 This means that you can run your program 1,000 times with no

problems, only to crash badly on time 1,001

 The following are common causes of race conditions:
 Two or more threads trying to modify a global variable at the same

time
 One thread calls free() on data that another thread is using
 Thread A is using variables declared on the stack of Thread B, which

become invalid when Thread B terminates
 Two or more threads calls a non-thread-safe function at the same

time

 Thread safety
 POSIX threads

 Work on Assignment 5
 Due Friday by midnight

 Read sections 6.4 and 6.5
 Study for Exam 2
 Next Monday!

	COMP 3400
	Last time
	Questions?
	Assignment 5
	TLS
	Transport-Layer Security
	TLS handshake
	Confidentiality and integrity
	Security is hard
	Internet Layer
	Internet layer
	Special subnets
	NAT
	Visualization of subnets
	IPv4 packet format
	IP packet example
	Network routing protocols
	Link Layer
	Link layer
	Ethernet
	Ethernet frames
	Stacks on stacks on stacks
	A glimpse at the physical layer
	Wireless
	Threading
	Threads and processes
	Advantages of threads
	Disadvantages of threads
	Race conditions
	Race condition scenarios
	Upcoming
	Next time…
	Reminders

